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✓ EHRs store detailed medical histories; a proposed system uses natural language to SQL for

easy querying.

✓ Shared task aims to build a reliable EHR question-answering system, ensuring accuracy and

avoiding incorrect answers to prevent penalties.

ProbGate at EHRSQL 2024: Enhancing SQL Query Generation Accuracy 
through Probabilistic Threshold Filtering and Error Handling 

Overview of Task
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Overview of Metric

Task Description
ProbGate at EHRSQL 2024: Enhancing SQL Query Generation Accuracy 
through Probabilistic Threshold Filtering and Error Handling 

• It is very important to reduce the -c point.

• First, create a Text2SQL model with high accuracy for answerable questions.

• Second, Distinguish well between answerable and unanswerable questions, which is equivalent 

to catching hallucinations in Text2SQL.
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Backgrounds
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[1] https://huggingface.co/defog/sqlcoder-7b-2

• As the performance of Large Language 

Models (LLMs) has improved recently, it 

seems beneficial to fine-tune using the 

most well-trained LLM available.

• For cost-effective and efficient 

experimentation, we fine-tuned our 

project's data using the GPT-3.5-Turbo 

model.
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Backgrounds
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• In the FLARE paper on retrieval-augmented 

generation, if the probability of any 

generated token falls below a certain 

threshold (θ), retrieval is triggered based 

on that token.

• This means that the log probability of a 

token can measure the model's 

uncertainty and be used to reduce 

hallucinations

[2] Active Retrieval Augmented Generation, EMNLP 2023
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Our Overall Method

ProbGate at EHRSQL 2024: Enhancing SQL Query Generation Accuracy 
through Probabilistic Threshold Filtering and Error Handling 



8

Our Overall Method
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✓ We first fine-tuned a Text2SQL model to generate SQL from given questions, removing

unanswerable questions during training.

✓ This process aims to maximize Text2SQL accuracy to accurately answer answerable questions

in the test dataset.
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Our Overall Method
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✓ We propose a two-step filtering method here to distinguish unanswerable SQL queries that

were incorrectly generated due to hallucination.

✓ The first is a filtering method called "ProbGate" which uses log probability, and the second

involves filtering through SQL Execution to verify any syntax errors in the generated SQL.
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ProbGate
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• For a given question, we can calculate the log 

probability of each token when generating SQL.

• We average the log probability values for tokens 

(up to 't' tokens), excluding reserved words like 

SELECT, FROM, etc.

• This averaged value is considered representative 

of the log probability for one test dataset. We 

compare it against other datasets, considering the 

lowest 'k' datasets as unanswerable.
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• Our primary focus here was finding the 

appropriate values for the parameters 't' and ‘k’.

• We assumed the optimal value of 'k' to be 425, 

based on the final outcomes of submissions 

labeled as 'null' and the performance of the fine-

tuned model.

• Similarly, through hyperparameter optimization, 

we determined the value of 't' to be 10.
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• We compared various models, filtering methods, and classifiers in the dev set with our final 

methodology, but none showed satisfactory performance.

• This methodology has been proven optimal for datasets in this project, where the 

distribution of train, dev, and test sets significantly differs.



13

Results and Analysis
04 ProbGate at EHRSQL 2024: Enhancing SQL Query Generation Accuracy 

through Probabilistic Threshold Filtering and Error Handling 

• In our final test set ablation study, we found that the combination of GPT-3.5-Turbo FT, 

ProbGate (t=425), and Error Handling Filtering yielded the best results.

• Ultimately, the smallest variance in results from rs0 to rs10 means that our approach 

incurred fewer '-c' penalties compared to other methodologies.
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• We compare the log probability distribution between 30% mixed answerable and unanswerable 

data using a model trained on about 70% answerable data from the train dataset.

• A clear log probability difference between answerable and unanswerable questions is evident, 

and this distinction is more pronounced in the fine-tuned model.
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Why Answerable data only finetune with LLM?

✓ Using a dataset with minimal noise ensures high accuracy and guarantees 

stable generation of complex SQL statements.

1

3

Why ProbGate?

✓ The trained model can effectively filter answerable and unanswerable data across different 

data distributions stably.

2

Why EHF?

✓ Grammatical errors can ultimately only be detected by actual execution; SQLs 

that pass this stage are syntactically correct, executable, and likely to achieve 

high accuracy.

ProbGate at EHRSQL 2024: Enhancing SQL Query Generation Accuracy 
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Conclusion



05

16

It was challenging to distinguish between SQL statements for nonsensical questions (truly 

unanswerable) and those that are executable but query non-existent values in the table.

1

It was difficult to determine the hyperparameter values 't' and 'k' depending on the data. 

During the competition, we believed that finding them empirically was the best approach.

2

Limitations

Conclusion, Limitations
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3 Although there were Text2SQL models with performance exceeding gpt-3.5-turbo, we failed 

to utilize them effectively, and our inability to make good use of table schema information 

remains a limitation.
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Optimized prompt for Fine-tuning Model Reserved Words

Appendix
ProbGate at EHRSQL 2024: Enhancing SQL Query Generation Accuracy 
through Probabilistic Threshold Filtering and Error Handling 
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Thank you!
Any Questions?
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